Purification of His-tag proteins

- Protino® Ni-IDA 150 Packed Columns
- Protino® Ni-IDA 1000 Packed Columns
- Protino® Ni-IDA 2000 Packed Columns
- Protino® Ni-IDA Resin
- Protino® Ni-IDA 96 Ni-IDA

April 2021 / Rev. 09
Contact MN

Germany and international
MACHEREY-NAGEL GmbH & Co. KG
Neumann-Neander-Str. 6–8 · 52355 Düren · Germany
Tel.: +49 24 21 969-0
Toll-free: 0800 26 16 000 (Germany only)
E-mail: info@mn-net.com

Technical Support Bioanalysis
Tel.: +49 24 21 969-270
E-mail: tech-bio@mn-net.com

USA
MACHEREY-NAGEL Inc.
924 Marcon Blvd. · Suite 102 · Allentown PA, 18109 · USA
Toll-free: 888 321 6224 (MACH)
E-mail: sales-us@mn-net.com

France
MACHEREY-NAGEL SAS
1, rue Gutenberg – BP135 · 67720 Hoerdt Cedex · France
Tel.: +33 388 68 22 68
E-mail: sales-fr@mn-net.com
MACHEREY-NAGEL SAS (Société par Actions Simplifiée) au capital de 186600 €
Siret 379 859 531 00020 · RCS Strasbourg B379859531 · N° intracommunautaire FR04 379 859 531

Switzerland
MACHEREY-NAGEL AG
Hirsackerstr. 7 · 4702 Oensingen · Switzerland
Tel.: +41 62 388 55 00
E-mail: sales-ch@mn-net.com

www.mn-net.com
Table of contents

1 Components 4
 1.1 Contents and storage 4
 1.2 Additional materials to be supplied by user 5

2 Product description 7
 2.1 The basic principle 7
 2.2 About this user manual 7

3 Product description 9
 3.1 Specifications 9
 3.2 Purification under native and denaturing conditions 10
 3.3 Binding capacity of Protino® Ni-IDA 11
 3.4 Culture size 14
 3.5 Binding, washing, and elution 17
 3.6 Compatibility of reagents 18

4 Safety instructions 20

5 Purification of polyhistidine-tagged proteins from E.coli under native conditions 21
 5.1 Preparation of buffers for purification under native conditions 21
 5.2 Preparation of cleared lysates under native conditions 22
 5.3 Protino® Ni-IDA Packed Columns – purification under native conditions 23
 5.4 Protino® Ni-IDA Resin – gravity-flow column chromatography under native conditions 26
 5.5 Protino® Ni-IDA Resin – batch gravity-flow purification protocol under native conditions 27
 5.6 Protino® Ni-IDA Resin – batch purification protocol under native conditions 28
 5.7 Protino® Ni-IDA Resin – medium pressure column chromatography under native conditions 29
 5.8 Protino® 96 Ni-IDA – purification under native conditions 30

6 Purification of polyhistidine-tagged proteins from E.coli under denaturing conditions 32
 6.1 Preparation of buffers for purification under denaturating conditions 32
 6.2 Cell extract preparation under denaturing conditions 33
 6.3 Protino® Ni-IDA Packed Columns – purification under denaturating conditions 34
 6.4 Protino® Ni-IDA Resin – gravity-flow column chromatography under denaturating conditions 35

7 Cleaning, recharging, and storage 36

8 Appendix 37
 8.1 Troubleshooting 37
 8.2 Ordering information 38
 8.3 Product use restriction / warranty 40
Purification of His-tag proteins

1 Components

1.1 Contents and storage

<table>
<thead>
<tr>
<th></th>
<th>Protino® Ni-IDA 150 Packed Columns</th>
<th>Protino® Ni-IDA 1000 Packed Columns</th>
<th>Protino® Ni-IDA 2000 Packed Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>10 preps 745150.10</td>
<td>5 preps 745160.5</td>
<td>5 preps 745170.5</td>
</tr>
<tr>
<td>Protino® Ni-IDA 150 Packed Columns</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8 x LEW Buffer</td>
<td>5 mL</td>
<td>30 mL</td>
<td>30 mL</td>
</tr>
<tr>
<td>4 x Elution Buffer</td>
<td>8 mL</td>
<td>20 mL</td>
<td>20 mL</td>
</tr>
<tr>
<td>User manual</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Protino® Ni-IDA 1000 Packed Columns</td>
<td>5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>8 x LEW Buffer</td>
<td>30 mL</td>
<td>140 mL</td>
<td>140 mL</td>
</tr>
<tr>
<td>4 x Elution Buffer</td>
<td>8 mL</td>
<td>100 mL</td>
<td>100 mL</td>
</tr>
<tr>
<td>Plastic Washer</td>
<td>5</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>User manual</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Protino® Ni-IDA 2000 Packed Columns</td>
<td>5</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>8 x LEW Buffer</td>
<td>30 mL</td>
<td>140 mL</td>
<td>140 mL</td>
</tr>
<tr>
<td>4 x Elution Buffer</td>
<td>20 mL</td>
<td>100 mL</td>
<td>100 mL</td>
</tr>
<tr>
<td>Plastic Washer</td>
<td>5</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>User manual</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Purification of His-tag proteins

Kit contents (continued)

<table>
<thead>
<tr>
<th>Protino® Ni-IDA Resin</th>
<th>745210.5</th>
<th>745210.30</th>
<th>745210.120</th>
<th>745210.600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protino® Ni-IDA Resin</td>
<td>5 g</td>
<td>30 g</td>
<td>120 g</td>
<td>600 g</td>
</tr>
<tr>
<td>User manual</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protino® 96 Ni-IDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Protino® 96 Ni-IDA Plate</td>
</tr>
<tr>
<td>8 x LEW Buffer</td>
</tr>
<tr>
<td>4 x Elution Buffer</td>
</tr>
<tr>
<td>User manual</td>
</tr>
</tbody>
</table>

Storage conditions

All kit components can be stored at 15–25 °C and are stable up to one year.

1.2 Additional materials to be supplied by user

Reagents
- Lysozyme
- **Protino® Ni-IDA 150 / 1000 / 2000 Packed Columns**
 Purification under native conditions: Kits already contain buffer stock solutions that have to be prepared according to the instructions, section 5.3.
 Purification under denaturing conditions: Denaturing Solubilization Buffer, Denaturing Elution Buffer, additional LEW Buffer (sodium phosphate, sodium chloride, urea, and imidazole). For buffer compositions refer to section 6.1.
- **Protino® Ni-IDA Resin**
 Purification under native conditions: LEW Buffer, Elution Buffer (sodium phosphate, sodium chloride, imidazole). For buffer compositions refer to section 5.1.
 Purification under denaturing conditions: LEW buffer, Denaturing Solubilization Buffer, Denaturing Elution Buffer, (sodium phosphate, sodium chloride, urea, and imidazole). For buffer compositions refer to section 6.1.
- **Protino® 96 Ni-IDA**
 Purification under native conditions: Kits already contain buffer stock solutions that have to be prepared according to the instructions, section 5.8.
Consumables

- Appropriate centrifugation / collection tubes
- Protino® Columns for gravity-flow column chromatography using Protino® Ni-IDA Resin
 For column IMAC using Protino® Ni-IDA Resin we generally recommend gravity-flow procedure. For this MACHEREY-NAGEL offers Protino® Columns 14 mL and 35 mL. Protino® Columns are empty polypropylene columns with an inserted filter frit. Separate frits for covering the column bed are also included. Protino® Columns are available with volume capacities of 14 mL and 35 mL (see ordering information). They can be used to retain up to 1.4 g and 3.5 g of Protino® Ni-IDA Resin, respectively. These maximum amounts of resin correspond to a protein binding capacity of 14 mg and 35 mg respectively (for 6 x His-GFPuv, concentration 2 mg/mL). For detailed information on binding capacity please also refer to sections 3.3 and 3.4).

<table>
<thead>
<tr>
<th>Table 1: Protino® Columns to be used with Protino® Ni-IDA Resin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Volume capacity [mL]</td>
</tr>
<tr>
<td>Protino® Columns 14 mL</td>
</tr>
<tr>
<td>Protino® Columns 35 mL</td>
</tr>
</tbody>
</table>

Equipment

- Appropriate centrifuge, sonicator

¹ Protein binding capacity refers to 6 x His-GFPuv.
2 Product description

2.1 The basic principle

Protino® Ni-IDA products enable fast and convenient purification of recombinant polyhistidine-tagged proteins by immobilized metal ion affinity chromatography (IMAC). Protino® Ni-IDA is a dry silica-based resin precharged with Ni²⁺ ions. Binding of protein is based on the interaction between the polyhistidine tag of the recombinant protein and immobilized Ni²⁺ ions. The chelating group of Protino® Ni-IDA is based on IDA (iminodiacetic acid), which enables strong and efficient binding of target protein onto the IMAC matrix (Figure 1). In contrast to traditional IDA matrices, Protino® Ni-IDA shows an optimized, low density of IDA ligands, which is created by a special manufacturing process. This non-saturating surface concentration of IDA eliminates non-specific interactions of contaminating proteins with the adsorbent. As a result, Protino® Ni-IDA ensures higher target protein purity.

IDA is a threedentate chelator which occupies three of the six binding sites in the coordination sphere of the Ni²⁺ ion. The remaining three coordination sites are usually occupied by water molecules and can be exchanged with histidine residues of the recombinant protein (Figure 1).

![Figure 1 Protino® Ni-IDA – Structure of IDA in complex with Ni²⁺](image)

2.2 About this user manual

For quick orientation in this user manual please follow the corresponding cross-reference given below.

<table>
<thead>
<tr>
<th>Product</th>
<th>Application</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protino® Ni-IDA Packed Columns</td>
<td>Gravity flow column chromatography</td>
<td>23, 32</td>
</tr>
<tr>
<td>Protino® Ni-IDA Resin</td>
<td>Gravity flow column chromatography</td>
<td>26, 35</td>
</tr>
<tr>
<td></td>
<td>Batch binding (in combination with gravity flow column chromatography)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Batch purification</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Medium pressure column chromatography (FPLC™)</td>
<td>29</td>
</tr>
<tr>
<td>Protino® 96 Ni-IDA</td>
<td>Gravity flow column chromatography</td>
<td>30</td>
</tr>
</tbody>
</table>
Protino® Ni-IDA Packed Columns:

Experienced users who are performing the purification of His tagged proteins using Protino® Ni-IDA Packed Columns may refer to the protocol-at-a-glance instead of this user manual (see section 5.3.1). The protocol-at-a-glance is designed to be used only as a supplemental tool for quick referencing while performing the purification procedure. First-time users are strongly advised to read this user manual.

The Protino® Ni-IDA Packed Columns protocols in this manual are organized as follows: The culture volumes and volumes of the respective buffers used for a particular column size are highlighted. Each procedural step is arranged like the following example (taken from section 5.3):

150 | 1000 | 2000

3 Column equilibration

Equilibrate Protino® Ni-IDA Packed Columns with 1 x LEW Buffer. Allow the column to drain by gravity

0.4 mL | 4 mL | 12 mL

Protino® Ni-IDA 150 / 1000 Packed Columns are designed to fit into most 15 mL conical centrifuge tubes (e.g., BD Falcon REF 352097) for convenient fraction collection.

For example, if you are using Protino® Ni-IDA 150 Packed Column you are requested to refer to the white boxes. These boxes indicate the volume of bacterial culture or buffer to be used. The respective buffer is highlighted in bold type within the instruction.

Referring to the a.m. example there has to be used 400 µL of LEW Buffer for column equilibration when using Protino® Ni-IDA 150 Packed Columns.

All technical literature is available on the internet at www.mn-net.com.

Please contact Technical Service regarding information about changes of the current user manual compared to previous revisions.
3 Product description

3.1 Specifications

Table 3: Specifications

Specifications Protino® Ni-IDA Packed Columns

<table>
<thead>
<tr>
<th>Protein capacity</th>
<th>150¹</th>
<th>1000¹</th>
<th>2000¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6 x His-GFPuv, ~ 32 kDa)</td>
<td>800 µg (40 mg resin)</td>
<td>5 mg (250 mg resin)</td>
<td>10 mg (500 mg resin)</td>
</tr>
<tr>
<td>Application</td>
<td>Gravity flow columns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical form</td>
<td>Ready-to-use columns, filled with dry matrix precharged with Ni²⁺</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specifications Protino® Ni-IDA Resin

<table>
<thead>
<tr>
<th>Protein capacity</th>
<th>20 mg/g resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6 x His-GFPuv, ~ 32 kDa)</td>
<td>10 mg/mL bed volume</td>
</tr>
<tr>
<td>Application</td>
<td>Batch</td>
</tr>
<tr>
<td></td>
<td>Gravity flow column</td>
</tr>
<tr>
<td></td>
<td>FPLC™</td>
</tr>
<tr>
<td>Physical form</td>
<td>Dry matrix, precharged with Ni²⁺</td>
</tr>
<tr>
<td>Max. pressure</td>
<td>145 psi (10 bar)</td>
</tr>
</tbody>
</table>

Specifications Protino® 96 Ni-IDA

<table>
<thead>
<tr>
<th>Protein capacity</th>
<th>1 mg/well</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6 x His-GFPuv, ~ 32 kDa)</td>
<td>(50 mg resin/well)</td>
</tr>
<tr>
<td>Application</td>
<td>Gravity flow chromatography</td>
</tr>
<tr>
<td>Physical form</td>
<td>Ready-to-use 96-well plates, filled with dry matrix precharged with Ni²⁺</td>
</tr>
</tbody>
</table>

¹ The nomenclature of the Protino® Ni-IDA Packed Columns is independent from the binding capacity but is to reflect the dimension of the column such as small, medium, and large.
Purification of His-tag proteins

Table 3: Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Protino® Ni-IDA Packed Columns, Resin, and 96 kits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>Macroporous silica</td>
</tr>
<tr>
<td>Density</td>
<td>0.5 g/mL</td>
</tr>
<tr>
<td></td>
<td>(1 g resin corresponds to 2 mL bed volume)</td>
</tr>
<tr>
<td>Chelating group</td>
<td>IDA (iminodiacetic acid)</td>
</tr>
<tr>
<td>Mean particle size</td>
<td>90 µm</td>
</tr>
<tr>
<td>pH stability</td>
<td>Since silica is susceptible to hydrolysis at high pH, buffers with pH > 8.4 should not be used)</td>
</tr>
<tr>
<td>Storage</td>
<td>≤ 25 °C</td>
</tr>
<tr>
<td>Recommended imidazole concentration for load/wash</td>
<td>0 mM</td>
</tr>
<tr>
<td>Recommended imidazole concentration for elution</td>
<td>≤ 250 mM</td>
</tr>
</tbody>
</table>

- Protino® Ni-IDA products enable routine purification of recombinant polyhistidine-tagged proteins under native or denaturing conditions.

- Although designed for the purification of polyhistidine-tagged proteins from *E.coli*, Protino® Ni-IDA products can also be used for the purification of polyhistidine-tagged proteins from other expression systems including insect cells, mammalian cells, and yeast.

- The capacity of Protino® Ni-IDA (see Table 3) was determined by using polyhistidine-tagged green fluorescent protein (6 x His-GFPuv, ~32 kDa) expressed in *E.coli*. Capacities will vary for each His-tagged protein.

3.2 Purification under native and denaturing conditions

This manual describes methods for the preparation of cell extracts from *E.coli* and procedures for the purification of polyhistidine-tagged recombinant proteins using Protino® Ni-IDA.

If recombinant proteins are expressed in *E.coli* ideally the target proteins remain soluble in the cytoplasm. However, especially proteins that are highly expressed accumulate in insoluble aggregates, which are called inclusion bodies. For solubilization of inclusion bodies buffers containing large amounts of denaturants are used. This manual includes instructions for isolation of soluble proteins (purification under native conditions, see section 5) as well as insoluble proteins from inclusion bodies (purification under denaturing conditions, see section 6).

In general for purification of polyhistidine-tagged proteins, the bacterial cells are disrupted using lysozyme in combination with sonication. After centrifugation, soluble target protein is found in the supernatant while inclusion bodies remain in the pellet. The clear supernatant can directly be subjected to further purification using Protino® Ni-IDA Packed Columns or Protino® Ni-IDA Resin under native conditions (see section 5). In case of massive formation of inclusion bodies the target protein is extracted from the pellet using a denaturant (8 M...
urea) and further purified using protocols for the purification under denaturing conditions (see section 6). If the distribution of the recombinant protein is unknown it is recommended to perform SDS-PAGE analysis using the crude cell extract prior to centrifugation and the clear supernatant after centrifugation. While the crude cell extracts will contain both soluble and insoluble target protein, only soluble target protein is found in the supernatant.

3.3 Binding capacity of Protino® Ni-IDA

3.3.1 General information

The binding capacity of Protino® Ni-IDA strongly depends on the characteristics of the polyhistidine-tagged protein, for example amino acid composition, molecular weight, 3-D structure, oligomerization properties, etc. Furthermore, the absolute yield also depends on the total amount and concentration of the target protein in the sample which in turn directly correlate with the expression level and the cell density of the expression culture. **Therefore binding capacity will vary for each polyhistidine-tagged protein and has to be determined for each expression experiment.**

The binding behaviour of any polyhistidine-tagged protein to Protino® Ni-IDA can be examined by calculating the amount of protein that is eluted as a function of the amount of protein that has been loaded (see Figure 2). Please note that the resulting graph will vary in dependence on characteristics and concentration of the individual His-tag protein. The binding curve can be divided in three stages:

1. **Stage of maximum recovery.** At this stage the loaded protein is bound to the resin nearly quantitatively and can be eluted nearly quantitatively, too (the binding curve is almost linear, see Figure 2, • eluted His-GFPuv).

2. **Stage of increasing yield / decreasing recovery.** At this stage the binding curve becomes non-linear and finally binding approaches saturation. The protein yield increases with further increasing amount of loaded protein.

3. **Stage of maximum yield / minimum recovery.** When loading excess protein, the available binding sites of the resin are saturated. The amount of eluted protein reaches a maximum.

The binding capacity for each individual protein can be defined as the yield, at which the binding curve changes from the stage of maximum recovery to the stage of increasing yield / decreasing recovery. This point is an optimal compromise between protein load and recovery and will vary for each individual protein.

3.3.2 Binding capacity

The binding capacity of Protino® Ni-IDA is exemplified using the green fluorescent protein (6 x His-GFPuv, ~ 32 kDa) at a concentration of 2 mg/mL.

Please note that different recombinant proteins may show a different binding behaviour.

Figure 2 shows a plot of the amount of eluted 6 x His-GFPuv against the amount of loaded 6 x His-GFPuv. The binding curve can be divided in three stages:
Purification of His-tag proteins

1. Stage of maximum recovery:
< ~ 20 mg 6 x His-GFPuv load/g resin

2. Stage of increasing yield / decreasing recovery:
> ~ 20 mg 6 x His-GFPuv load/g resin

3. Stage of maximum yield / minimum recovery:
> ~ 70 mg 6 x His-GFPuv load/g resin

Under the above mentioned conditions the binding capacity of Protino® Ni-ID for 6 x His-GFPuv is approximately 20 mg protein per g of resin (see arrow, Figure 2). At this point the protein recovery is > 80%. Consequently the following amounts of 6 x His-GFPuv have to be loaded: For optimal recovery: load ~ 20 mg protein per 1 g of Protino® Ni-ID Resin, for maximum yield: load ~ 75 mg protein per 1 g of Protino® Ni-ID Resin.

Figure 2 Binding behaviour of 6 x His-GFPuv to Protino® Ni-IDA Resin

Gravity flow columns packed with 40 mg of Protino® Ni-IDA Resin were loaded with increasing volumes of an *E. coli* lysate containing 6 x His-GFPuv (protein concentration 2 mg/mL). After washing with 640 µL LEW Buffer the target protein was eluted with 960 µL Elution Buffer. Yield (left axis) and recovery (right axis) of 6 x His-GFPuv are plotted versus the amount of loaded protein. For convenient analysis the values are converted to mg 6 x His-GFPuv per 1 g resin.

Recovery rates and yield can be increased by using samples containing higher concentrated polyhistidine-tagged protein (6 x His-GFPuv). Figure 3 shows that the yield of purified polyhistidine-tagged protein is not only depending on the total amount of target protein loaded on the column (also see Figure 2) but also on its concentration in the lysate. Consequently the concentration of target protein in the sample should be as high as possible.
Recombinant 6 x His-GFPuv was expressed in *E.coli*. The concentration of the target protein in the culture reached 100 mg/L. 1 g cells were lysed in 2 mL LEW Buffer according to section 3.4 in order to obtain a highly concentrated lysate. The concentration of 6 x His-GFPuv in the lysate was 8 mg/mL. Gravity flow columns packed with 40 mg of Protino® Ni-IDA Resin were loaded with increasing volumes (amounts) of the lysate. After washing, the target protein was eluted with Elution buffer. The yield of 6 x His-GFPuv is plotted against the amount of loaded target protein. The same test was performed using diluted lysates with concentrations of 0.5 and 2 mg/mL. For convenient analysis the values are converted to mg 6 x His-GFPuv per 1 g resin.

Please note: The higher the protein concentration in the sample and the higher the total amount of protein loaded on Protino® Ni-IDA Packed Columns or Resin, the higher will be the absolute yields. For example if loading ~ 75 mg 6 x His-GFPuv (concentration: 8 mg/mL) per g Protino® Ni-IDA Resin, a maximum yield of ~ 50 mg/g can be obtained.
3.4 Culture size

As outlined above, the protein yield depends on various parameters. However, some recommendations on protein load and culture size can be given as a starting point.

Note that yield and protein load are exemplified for the 6 x His-GFPuv (~ 32 kDa) and may vary from protein to protein.

- Use rather high concentrations of the target protein in the sample.
- For maximum yield use an excess amount of polyhistidine-tagged protein in the loaded sample. For example apply up to 75 mg of anticipated 6 x His-GFPuv per 1 g of Protino® Ni-IDA Resin.
- For maximum recovery use up to 20 mg of 6 x His-GFPuv per 1 g of Protino® Ni-IDA Resin.

The concentration of the polyhistidine-tagged protein in the culture may vary from < 1 mg/L up to 200 mg/L depending on cell density and expression level. It is recommended to determine the protein concentration for each expression experiment, for example via SDS-PAGE. On average, 250 mL of culture will produce approximately 1 g of pelleted, wet cells.

- Transfer the cell lysate from a 200–750 mL (high expression at 100 mg/L) or 2000–7500 mL (low expression at 10 mg/L) E.coli culture to 1 g of Protino® Ni-IDA Resin.

In order to obtain highly concentrated lysates, lyse wet cells in 2–5 mL LEW Buffer per 1 g wet mass. The volume of LEW Buffer should be adjusted according to the amount of polyhistidine-tagged protein in the culture. For example, 1 g cells may be resuspended in 2–5 mL LEW Buffer if a protein is expressed at 50–200 mg/L. For cultures with lower target protein content 1 g cells should be resuspended in 2 mL of LEW Buffer.

For recovering polyhistidine-tagged protein from E.coli cultures we recommend treatment with lysozyme in combination with sonication. If you are purifying recombinant protein from eukaryotic cells, treat the cells with an appropriate buffer containing a mild detergent (Sambrook et al., 1989).
Purification of His-tag proteins

Table 4: Determination of culture and buffer volume requirements

<table>
<thead>
<tr>
<th>Concentration of HisTag protein in the culture</th>
<th>Recommended E.coli</th>
<th>Native</th>
<th>Denaturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results in protein load [mg]</td>
<td>culture volume [mL]</td>
<td>pellet wet mass¹ [g]</td>
<td>LEW Buffer² (resuspension) [mL]</td>
</tr>
<tr>
<td>Protino® Ni-IDÁ Resin, 1 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>high, ~ 100 mg/L</td>
<td>Recovery_{\text{max}}</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Yield_{\text{max}}</td>
<td>75</td>
<td>750</td>
</tr>
<tr>
<td>low, ~ 10 mg/L</td>
<td>Recovery_{\text{max}}</td>
<td>20</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>Yield_{\text{max}}</td>
<td>75</td>
<td>7500</td>
</tr>
<tr>
<td>Protino® Ni-IDÁ 150 Packed Columns (40 mg Resin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>high, ~ 100 mg/L</td>
<td>Recovery_{\text{max}}</td>
<td>0.8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Yield_{\text{max}}</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>low, ~ 10 mg/L</td>
<td>Recovery_{\text{max}}</td>
<td>0.8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Yield_{\text{max}}</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>Protino® Ni-IDÁ 1000 Packed Columns (250 mg Resin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>high, ~ 100 mg/L</td>
<td>Recovery_{\text{max}}</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Yield_{\text{max}}</td>
<td>18.8</td>
<td>188</td>
</tr>
<tr>
<td>low, ~ 10 mg/L</td>
<td>Recovery_{\text{max}}</td>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Yield_{\text{max}}</td>
<td>18.8</td>
<td>1880</td>
</tr>
<tr>
<td>Protino® Ni-IDÁ 2000 Packed Columns (500 mg Resin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>high, ~ 100 mg/L</td>
<td>Recovery_{\text{max}}</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Yield_{\text{max}}</td>
<td>37.5</td>
<td>375</td>
</tr>
<tr>
<td>low, ~ 10 mg/L</td>
<td>Recovery_{\text{max}}</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Yield_{\text{max}}</td>
<td>37.5</td>
<td>3750</td>
</tr>
</tbody>
</table>

¹ On average, 250 mL of culture will produce approximately 1 g of pelleted, wet cells.

² Lysis-Equilibration-Wash Buffer

³ Denaturing Solubilization Buffer

⁴ Inclusion Bodies
Purification of His-tag proteins

1 g Protino Ni-IDA Resin

For maximum recovery

- Load ~20 mg protein

For maximum yield

- Load ~75 mg protein

<table>
<thead>
<tr>
<th>High expression culture (~100 mg/L)</th>
<th>Low expression culture (~10 mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use 200 mL culture (~0.8 g cell pellet)</td>
<td>Use 2000 mL culture (~8 g cell pellet)</td>
</tr>
<tr>
<td>Resuspend in ~4 mL LEW (ratio 1:5)</td>
<td>Resuspend in ~16 mL LEW (ratio 1:2)</td>
</tr>
<tr>
<td>~4 mL of protein lysate (conc. 5 mg/mL)</td>
<td>~16 mL of protein lysate (conc. 1.25 mg/mL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High expression culture (~100 mg/L)</th>
<th>Low expression culture (~10 mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use 750 mL culture (~3 g cell pellet)</td>
<td>Use 7500 mL culture (~30 g cell pellet)</td>
</tr>
<tr>
<td>Resuspend in ~15 mL LEW (ratio 1:5)</td>
<td>Resuspend in ~60 mL LEW (ratio 1:2)</td>
</tr>
<tr>
<td>~15 mL of protein lysate (conc. 5 mg/mL)</td>
<td>~60 mL of protein lysate (conc. 1.25 mg/mL)</td>
</tr>
</tbody>
</table>

Figure 4 Required culture volumes and LEW Buffer volumes

for maximum protein recovery or maximum yield in dependence on protein expression level. The volumes noted below are only exemplary and are shown for 1 g of Protino® Ni-IDA Resin (purification under native conditions). Please use these recommendations as a starting point to evaluate optional purification results. Note that purification conditions have to be optimized for each individual polyhistidine-tagged protein.
3.5 Binding, washing, and elution

In contrast to traditional IDA matrices, Protino® Ni-IDA shows an optimized, low density of IDA ligands, which is created by a special manufacturing process. This non-saturating surface concentration of IDA eliminates non-specific interactions of contaminating proteins with the adsorbent. Since virtually no contaminating host proteins bind to Protino® Ni-IDA, stringent washing procedures are generally not necessary. Therefore LEW Buffer, which is used for lysis, equilibration, and washing, does not contain any imidazole. Bound polyhistidine-tagged protein can competitively be eluted by adding imidazole. The recommended Elution Buffer contains 250 mM imidazole in order to recover even strong binding, multimeric proteins with more than one polyhistidine tag (also see buffer compositions section 5.1 and 6.1). However, as shown in Figure 5, depending on the protein, elution may be equally effective in the presence of much lower imidazole concentrations. If, for example, the stability or integrity of the target protein in 250 mM imidazole is a concern the concentration of imidazole in the eluent may readily be reduced.

![Figure 5 Purification of polyhistidine-tagged GFPuv using Protino® Ni-IDA and Ni-IDA Agarose](image)

Recombinant GFPuv was expressed in *E.coli*, lysed, loaded onto each gravity flow column, and eluted by a stepwise imidazole gradient. Eluted fractions were analyzed by SDS-PAGE. Pure polyhistidine-tagged protein can be eluted from Protino® Ni-IDA (left panel) at much lower imidazole concentrations than from Ni-IDA Agarose (right panel). In addition, Ni-IDA Agarose releases contaminating proteins from 10 mM to 100 mM imidazole. M = Marker proteins, CL = Cleared lysate.
3.6 Compatibility of reagents

Buffer components that chelate metal ions, such as EDTA and EGTA, should not be used since they strip Ni$^{2+}$ ions from the matrix.

Do not use buffers with pH > 8.4, since silica dissolves in solutions of high pH.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Effect</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium phosphate</td>
<td>Used in LEW and Elution Buffer in order to buffer the solutions at pH 8</td>
<td>50 mM is recommended. The pH of any buffer should be adjusted to 8, although in some cases a pH between 7 and 8 can be used.</td>
</tr>
<tr>
<td>Tris</td>
<td>Coordinates with Ni$^{2+}$ ions, causing a decrease in capacity</td>
<td>10 mM may be used, sodium phosphate buffer is recommended.</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>Prevents ionic interactions and therefore unspecific binding</td>
<td>Up to 2 M can be used, at least 0.3 M should be used.</td>
</tr>
<tr>
<td>Imidazole</td>
<td>Binds to immobilized Ni$^{2+}$ ions and competes with the polyhistidine-tagged proteins</td>
<td>Should not be included in LEW Buffer</td>
</tr>
<tr>
<td>Urea</td>
<td>Solubilizes protein</td>
<td>Use 8 M for purification under denaturing conditions.</td>
</tr>
<tr>
<td>GuHCl</td>
<td>Solubilizes protein</td>
<td>Up to 6 M can be used</td>
</tr>
<tr>
<td>β-mercaptoethanol</td>
<td>Prevents formation of disulfide bonds; Can reduce Ni$^{2+}$ ions at higher concentrations</td>
<td>Up to 50 mM in samples has been used successfully in some cases</td>
</tr>
<tr>
<td>DTT, DTE</td>
<td>Can reduce Ni$^{2+}$ ions at higher concentrations</td>
<td>Up to 10 mM in samples has been used successfully in some cases</td>
</tr>
<tr>
<td>Glutathione reduced</td>
<td>Can reduce Ni$^{2+}$ ions at higher concentrations</td>
<td>Up to 30 mM in samples has been used successfully in some cases</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Prevents hydrophobic interactions between proteins</td>
<td>Up to 50 % can be used</td>
</tr>
</tbody>
</table>
Table 5: Reagent compatibility chart

<table>
<thead>
<tr>
<th></th>
<th>Effect on Ni²⁺ ions</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>Coordinates with Ni²⁺ ions, causing a decrease in capacity at higher concentrations</td>
<td>Not recommended, but up to 1 mM in samples has been used successfully in some cases</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Prevents hydrophobic interactions between proteins</td>
<td>Up to 20 % can be used; Ethanol may precipitate proteins, causing low flow rates and column clogging</td>
</tr>
<tr>
<td>SDS</td>
<td>Interacts with Ni²⁺ ions, causing a decrease in capacity</td>
<td>Not recommended, but up to 0.5 % in samples has been used successfully in some cases</td>
</tr>
<tr>
<td>Triton, Tween</td>
<td>Removes background proteins</td>
<td>Up to 2 % can be used</td>
</tr>
</tbody>
</table>
4 Safety instructions

The following components of the Protino® Ni-IDA products contain hazardous contents.

Wear gloves and goggles and follow the safety instructions given in this section.

<table>
<thead>
<tr>
<th>Component</th>
<th>Hazard contents</th>
<th>GHS symbol</th>
<th>Hazard phrases</th>
<th>Precaution phrases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protino® Ni-IDA Columns /</td>
<td>Resin with Ni in nickel(II) complexes 0.38–3.8 %</td>
<td></td>
<td>317, 334, 341, 350i, 410</td>
<td>201, 261sh, 273, 280sh, 342+311, 391, 405</td>
</tr>
<tr>
<td>Resin</td>
<td>Polymer in Ni in Nickel(II)-Komplexen 0.38–3.8 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer 4 x Elution</td>
<td>Imidazole 5–10 %</td>
<td></td>
<td>360D</td>
<td>201 280sh, 308+313, 405</td>
</tr>
<tr>
<td></td>
<td>Imidazol 5–10 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS 288-32-4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⚠️ The symbol shown on labels refers to further safety information in this section.

Das auf Etiketten dargestellte Symbol weist auf weitere Sicherheitsinformationen dieses Kapitels hin.

Hazard phrases

H 317 May cause an allergic skin reaction.
Kann allergische Hautreaktionen verursachen.

H 334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.
Kann bei Einatmen Allergie, asthmaartige Symptome oder Atembeschwerden verursachen.

H 341 Suspected of causing genetic defects.
Kann vermutlich genetische Defekte verursachen.

H 350i May cause cancer if inhaled.
Kann beim Einatmen Krebs erzeugen.

H 360D May damage the unborn child.
Kann das Kind im Mutterleib schädigen.

H 410 Very toxic to aquatic life with long lasting effects.
Sehr giftig für Wasserorganismen, mit langfristiger Wirkung.

Precaution phrases

P 201 Obtain special instructions before use.
Vor Gebrauch besondere Anweisungen einholen.

P 261sh Avoid breathing dust/vapors.
Einatmen von Staub/Dampf vermeiden.

P 273 Avoid release to the environment.
Freisetzun in die Umwelt vermeiden.

P 280sh Wear protective gloves/eye protection.
Schutzhandschuhe/Augenschutz tragen.
5 Purification of polyhistidine-tagged proteins from *E.coli* under native conditions

5.1 Preparation of buffers for purification under native conditions

Protino® Ni-IDA 150 / 1000 / 2000 Packed Columns kits and Protino® 96 Ni-IDA kits contain LEW / Elution Buffer stock solutions that have to be diluted according to the instructions given in the individual protocol (see sections 5.3 and 5.8).

Protino® Ni-IDA Resin kits do not contain any buffers. Prepare LEW Buffer and Elution Buffer according to the instructions given in this section.

Note that lysis buffer, equilibration buffer, and washing buffer are the same.

Note: Do not include any imidazole in the Lysis-Equilibration-Wash Buffer, since most proteins do not bind to the resin in the presence of even low imidazole concentration!

Lysis-Equilibration-Wash Buffer (1 x LEW Buffer, 1 liter):

- 50 mM NaH₂PO₄ 7.8 g NaH₂PO₄ x 2 H₂O (MW = 156.01 g/mol)
- 300 mM NaCl 17.5 g NaCl (MW = 58.44 g/mol)
- Adjust pH to 8.0 using NaOH

Elution Buffer (1 x buffer, 1 liter):

- 50 mM NaH₂PO₄ 7.8 g NaH₂PO₄ x 2 H₂O (MW = 156.01 g/mol)
- 300 mM NaCl 17.5 g NaCl (MW = 58.44 g/mol)
- 250 mM imidazole 17.0 g imidazole (MW = 68.08 g/mol)
- Adjust pH to 8.0 using NaOH
5.2 Preparation of cleared lysates under native conditions

1. **Refer to Table 3, section 3.4 for detailed information on culture and buffer volume requirements**

 Thaw the cell pellet from an *E.coli* expression culture on ice (if frozen). Resuspend **1 g of pelleted, wet cells in 2–5 mL LEW Buffer** (for details see section 3.4). Pipette up and down, or use stirring until complete resuspension without visible cell aggregates. Perform this step on ice.

2. **Add lysozyme to a final concentration of 1 mg/mL.** Stir the solution **on ice** for **30 min**.

3. Sonicate the suspension on ice according to the instructions provided by the manufacturer (e.g., use 10 x 15 s bursts with a 15 s cooling period between each burst).

 Carefully check samples’ appearance after sonication. If the lysate is still viscous from incomplete fragmentation of DNA, add 5 µg/mL DNase and stir on ice for 15 min.

4. **Centrifuge the crude lysate at 10,000 x g for 30 min at 4 °C** to remove cellular debris. Carefully transfer the supernatant to a clean tube without disturbing the pellet.

 If the supernatant is not clear, centrifuge a second time or filter through a 0.45 µm membrane (e.g., cellulose acetate) to avoid clogging of the IMAC column with insoluble material.

 Store supernatant on ice.

Proceed to section 5.3, 5.4, 5.5, 5.6, 5.7, or 5.8.
5.3 Protino® Ni-IDA Packed Columns – purification under native conditions

5.3.1 Protocol-at-a-glance

Note: This section only refers to Protino® Ni-IDA 150, 1000, and 2000 Packed Columns.

Protino® Ni-IDA Packed Columns

<table>
<thead>
<tr>
<th>150</th>
<th>1000</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivate and harvest cells</td>
<td>4,500–6,000 x g</td>
<td>4,500–6,000 x g</td>
</tr>
<tr>
<td>15 min at 4 °C</td>
<td>15 min at 4 °C</td>
<td>15 min at 4 °C</td>
</tr>
</tbody>
</table>

Preparation of working solutions (per column)

8 x LEW Buffer	1.5 mL	2.5 mL	
+ water	+ 2.1 mL	+ 10.5 mL	+ 17.5 mL
= 1 x LEW Buffer	= 2.4 mL	= 12 mL	= 20 mL
4 x Elution Buffer	1.5 mL	3 mL	
+ water	+ 0.75 mL	+ 4.5 mL	+ 9 mL
= 1 x Elution Buffer	= 1 mL	= 6 mL	= 12 mL

Cell extract preparation

Refer to section 5.2.

Column Equilibration

| 1 x LEW Buffer | 320 µL | 2 mL | 4 mL |

Binding

Load clarified lysate onto the column

Washing

| 1 x LEW Buffer | 2 x 320 µL | 2 mL | 4 mL |

Elution

| 1 x Elution Buffer | 3 x 240 µL | 3 x 1.5 mL | 3 x 3 mL |
5.3.2 Procedure

Note: Experienced users may refer to the protocol at a glance, page 23.

Protino® Ni-IDA Packed Columns

<table>
<thead>
<tr>
<th>Volume (mL)</th>
<th>150</th>
<th>1000</th>
<th>2000</th>
</tr>
</thead>
</table>

1 **Cultivate and harvest cells**

Harvest cells from an *E.coli* expression culture by centrifugation at **4,500–6,000 x g** for **15 min at 4 °C**. Remove supernatant. Store cell pellet at -20 °C if not processed immediately.

2 **Preparation of working solutions**

Prepare 1 × LEW (Lysis / Equilibration / Wash) Buffer and 1 × Elution Buffer by diluting the supplied stock solutions.

Note: If precipitate is observed in the stock solutions, warm and shake them to dissolve precipitate prior to diluting the buffers.

Mix 8 × LEW Buffer

<table>
<thead>
<tr>
<th>Volume (mL)</th>
<th>0.3 mL</th>
<th>1.5 mL</th>
<th>2.5 mL</th>
</tr>
</thead>
</table>

with deionized water

<table>
<thead>
<tr>
<th>Volume (mL)</th>
<th>2.1 mL</th>
<th>10.5 mL</th>
<th>17.5 mL</th>
</tr>
</thead>
</table>

to get a **final volume** of 1 × LEW Buffer sufficient for one column run.

Mix 4 × Elution Buffer

<table>
<thead>
<tr>
<th>Volume (mL)</th>
<th>0.25 mL</th>
<th>1.5 mL</th>
<th>3 mL</th>
</tr>
</thead>
</table>

with deionized water

<table>
<thead>
<tr>
<th>Volume (mL)</th>
<th>0.75 mL</th>
<th>4.5 mL</th>
<th>9 mL</th>
</tr>
</thead>
</table>

to get a **final volume** of 1 × LEW Buffer sufficient for one column run.

<table>
<thead>
<tr>
<th>Volume (mL)</th>
<th>2.4 mL</th>
<th>8 mL</th>
<th>12 mL</th>
</tr>
</thead>
</table>

3 **Cell Extract Preparation**

Refer to section 5.2. For detailed information on culture and buffer volumes for cell extract preparation also see Table 3, section 3.4.
Protino® Ni-IDA Packed Columns

4 Column equilibration

Equilibrate Protino® Ni-IDA Packed Columns with **1 x LEW Buffer**. Allow the column to drain by gravity.

<table>
<thead>
<tr>
<th>150</th>
<th>1000</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>320 µL</td>
<td>2 mL</td>
<td>4 mL</td>
</tr>
</tbody>
</table>

Protino® Ni-IDA 150 / 1000 Packed Columns are designed to fit into most 15 mL conical centrifuge tubes (e.g., BD Falcon REF 352097) for convenient fraction collection.

5 Binding

Add the cleared lysate (see section 5.2) to the pre-equilibrated column and allow the column to drain by gravity.

6 Washing

Wash the column with **1 x LEW Buffer**. Allow the column to drain by gravity.

| 2 x 320 µL | 2 x 2 mL | 2 x 4 mL |

7 Elution

Elute the polyhistidine-tagged protein in a new collecting tube by adding **1 x Elution Buffer**. Allow the column to drain by gravity.

| 3 x 240 µL | 3 x 1.5 mL | 3 x 3 mL |

Note: Depending on protein characteristics 90% of the eluted protein can be found in the first elution fraction.

Use protein assay and/or SDS-PAGE analysis to determine which fraction(s) contain(s) the majority of the polyhistidine-tagged protein.
5.4 Protino® Ni-IDA Resin – gravity-flow column chromatography under native conditions

For column IMAC using Protino® Ni-IDA Resin we generally recommend gravity-flow procedure. This protocol describes gravity-flow column chromatography using Protino® Ni-IDA Resin and Protino® Columns (see section 2.1).

Prepacked columns filled with 40 mg, 250 mg or 500 mg Protino® Ni-IDA Resin may readily be used (Protino® Ni-IDA 150, 1000, or 2000 Packed Columns, see section 5.3 and ordering information).

Note: When using other types of chromatography columns please note that the pore size of the filter frit should be around 50 µm to ensure appropriate flow rates.

1 Column preparation

Transfer the appropriate amount of Protino® Ni-IDA Resin to an empty Protino® Column. To achieve tight packing, gently tap the column on a hard surface until the bed height remains constant. Place a separate filter frit on top of the column bed by using a lab pen. Gently tap on the frit to ensure that there is no gap between column bed and filter frit.

1 g of Protino® Ni-IDA Resin will result in 2 mL bed volume. The amount of resin required depends on the amount of polyhistidine-tagged protein to be purified. The binding capacity of Protino® Ni-IDA Resin varies from protein to protein. See section 3.3 for general guidelines.

2 Column equilibration

Equilibrate the column with 4 bed volumes of LEW Buffer. Allow the column to drain by gravity.

3 Binding

Add the supernatant (cleared lysate, see section 5.2) to the pre-equilibrated column and allow the column to drain by gravity.

Apply at least 1.5 bed volumes of sample.

4 Washing

Wash the column twice with 4 bed volumes of LEW Buffer. Allow the column to drain by gravity.

5 Elution

Elute the polyhistidine-tagged protein in three fractions. Add 3 x 3 bed volumes of Elution Buffer and collect separately. Allow the column to drain by gravity.

Note: Depending on protein characteristics 90% of the eluted protein can be found in the first elution fraction.

Use protein assay and/or SDS-PAGE analysis to determine which fraction(s) contain(s) the majority of the polyhistidine-tagged protein.
5.5 Protino® Ni-IDA Resin – batch gravity-flow purification protocol under native conditions

Although we recommend gravity flow procedure, polyhistidine-tagged proteins may be purified by the following batch/gravity-flow protocol.

Note: Usually the yield is not significantly increased using time-consuming shaking.

1 **Batch binding**

Add the **appropriate amount** of Protino® Ni-IDA Resin directly to the cleared lysate (see section 5.2). Gently mix the material on an orbital shaker for 5–15 min. Do not use a magnetic stirrer to avoid generating fine particles through excessive physical force.

The amount of resin required depends on the amount of polyhistidine-tagged protein to be purified. The binding capacity of Protino® Ni-IDA Resin varies from protein to protein. See section 3.3 for general guidelines.

1 g of Protino® Ni-IDA Resin will result in 2 mL bed volume.

The length of time required for optimal binding will vary from protein to protein.

2 **Transfer**

Transfer the lysate-resin mixture to an empty chromatography column, for example Protino® Columns (see section 1.2 and ordering information). Let the resin settle by gravity flow.

3 **Washing**

Wash the column with **8 bed volumes** of LEW Buffer. Allow the column to drain by gravity.

4 **Elution**

Elute the polyhistidine-tagged protein in three fractions. Add **3 x 3 bed volumes** of Elution Buffer and collect separately. Allow the column to drain by gravity.

Note: Depending on protein characteristics 90% of the eluted protein can be found in the first elution fraction.

Use protein assay and/or SDS-PAGE analysis to determine which fraction(s) contain(s) the majority of the polyhistidine-tagged protein.
5.6 Protino® Ni-IDA Resin – batch purification protocol under native conditions

Although we recommend gravity flow procedure polystyrene-tagged proteins may be purified by the following batch protocol.

1 Batch binding

Add the appropriate amount of Protino® Ni-IDA Resin directly to the cleared lysate (see section 5.2) filled in a centrifugation tube. Close the tube and mix the suspension gently, for example on an orbital shaker for 5–15 min.

The amount of resin required depends on the amount of polystyrene-tagged protein to be purified. The binding capacity of Protino® Ni-IDA Resin varies from protein to protein. See section 3.3 for general guidelines.

1 g of Protino® Ni-IDA Resin will result in 2 mL bed volume.

The length of time required for optimal binding will vary from protein to protein.

Sediment the resin by gravity or centrifugation at 500 x g for 1 min. Carefully decant the supernatant and discard it.

2 Washing

Add 4 bed volumes of LEW Buffer and mix for 5 min.

Sediment the resin by gravity or centrifugation at 500 x g for 1 min. Carefully decant the supernatant and dispose of it.

Repeat the washing step one or two more times (total wash 2–3 x 4 bed volumes of LEW Buffer).

3 Elution

Add 3 bed volumes of Elution Buffer and mix for 5 min.

Sediment the resin by gravity or centrifugation at 500 x g for 1 min.

Carefully decant or pipette the eluate in a new tube.

Repeat the elution step two more times (total elution 3 x 3 bed volumes of LEW Buffer).

Note: Depending on protein characteristics 90 % of the eluted protein can be found in the first elution fraction.

Use protein assay and/or SDS-PAGE analysis to determine which fraction(s) contain(s) the majority of the polystyrene-tagged protein.
5.7 Protino® Ni-IDA Resin – medium pressure column chromatography under native conditions

According to the physical stability of the Protino® Ni-IDA Resin it is ideally suited for medium pressure column chromatography. The rigid matrix can be run under high flow rates and high back pressure. Furthermore Protino® Ni-IDA Resin does not shrink or swell upon hydration.

As a starting point run columns at flow rates of 0.5–1.0 mL/min/cm². If the polyhistidine-tagged protein does not bind, further reduce the flow rate. Optimal flow rates have to be determined empirically, because dissociation rates vary widely from protein to protein.

1 Column preparation - slurry packing

Make a ~ 10 % (w/v) slurry of Protino® Ni-IDA Resin in degassed deionized water. Do not use a magnetic stirrer to avoid generating fine particles through excessive physical force. Slowly pour the suspension into the column. Avoid introducing air bubbles.

1 g of Protino® Ni-IDA Resin will result in 2 mL bed volume.

The amount of resin required depends on the amount of polyhistidine-tagged protein to be purified. The binding capacity of Protino® Ni-IDA Resin varies from protein to protein. See section 3.3 for general guidelines.

Allow the resin to settle. Insert and adjust top adapter and connect the column to the chromatography system according to the manufacturer’s instructions. Avoid introducing air bubbles.

2 Column equilibration

Equilibrate the column with 4 bed volumes of LEW Buffer or until the baseline at 280 nm is stable.

3 Binding

Apply the cleared lysate (see section 5.2) to the column.

4 Washing

Wash the column with 8 bed volumes of LEW Buffer or until the baseline at 280 nm is stable.

Do not add imidazole to the LEW Buffer.

5 Elution

Elute the polyhistidine-tagged protein with 5–10 bed volumes of Elution Buffer using a step gradient.

When monitoring protein elution note that imidazole absorbs at 280 nm.

Note: Depending on protein characteristics 90 % of the eluted protein can be found in the first elution fraction.

Use protein assay and/or SDS-PAGE analysis to determine which fraction(s) contain(s) the majority of the polyhistidine-tagged protein.
5.8 Protino® 96 Ni-IDA – purification under native conditions

1 Cultivate and harvest cells

E.coli cells may be cultivated in 96-well plates (1 mL culture volume), 24-well plates (5 mL culture volume), or any other appropriate cultivation vessel, if larger culture volumes are required.

Harvest cells by centrifugation at **2000 x g** for **15 min at 4 °C**. Store cell pellets at -20 °C or -70 °C for at least 1 h.

2 Preparation of working solutions

Prepare 1 x LEW (Lysis / Equilibration / Wash) Buffer and 1 x Elution Buffer by diluting the supplied stock solutions.

Note: If precipitate is observed in the stock solutions, warm and shake them to dissolve precipitate prior to diluting the buffers.

Mix **30 mL** of **8 x LEW Buffer**
with **210 mL** of **deionized water**
to get a **final volume** of **240 mL 1x LEW Buffer** sufficient for 96 preps.

Mix **20 mL** of **4 x Elution Buffer**
with **60 mL** of **deionized water**
to get a **final volume** of **80 mL** of **1 x Elution Buffer** sufficient for 96 preps.

3 Cell extract preparation

Use standard procedures for the preparation of cell extracts, such as lysozyme treatment, sonication, or detergent treatment. Note that optimal sample preparation steps have to be determined empirically depending on the characteristics of the of the polyhistidine-tagged protein and host organism.

Cell extracts from > 5 mL E.coli expression culture

For preparation of cell extracts from large volumes of *E.coli* expression culture (> 5 mL culture) refer to section 5.2.

Cell extracts from ≤ 5 mL E.coli expression culture

For preparation of cell extracts from up to 5 mL *E.coli* expression culture we recommend the following protocol as a starting point for further optimization.

Thaw cell pellets at room temperature. Resuspend each pellet in **1 mL** of **1 x LEW Buffer** containing **0.2 mg/mL lysozyme**. Incubate at room temperature for 30 min in a shaker. If the lysate is still viscous, add 15 U of Benzonase® per well, mix, and incubate at room temperature for 30 min. Benzonase® reduces lysate viscosity by rapidly hydrolysing DNA and RNA.

Centrifuge the crude lysate at **5,000 x g** for **30 min at 4 °C** to remove cellular debris.

If the supernatant is not clear, centrifuge a second time to avoid clogging of the Protino® 96 Ni-IDA Plate with insoluble material.

Store supernatant on ice.
4 **Equilibration**

Equilibrate the Protino® 96 Ni-IDA Plate by adding \(500 \, \mu\text{L} \) of **1x LEW Buffer** to each well. Allow the wells to drain by gravity.

5 **Binding**

Add the cleared lysate (supernatant, see step 3 or section 5.2) to the pre-equilibrated wells of the Protino® 96 Ni-IDA Plate. Allow the wells to drain by gravity.

Note: The lysate should not contain any imidazole, since most proteins do not bind to the resin in the presence of even low imidazole concentrations.

6 **Washing**

Wash each well twice by adding **800 \, \mu\text{L}** of **1x LEW Buffer**. Allow the wells to drain by gravity.

Note: Stringent washing procedures by using buffers with low imidazole concentrations are generally not necessary. Therefore LEW Buffer does not contain any imidazole.

7 **Elution**

Elute the polyhistidine-tagged protein in a suitable collecting plate (e.g., Rack of Tube Strips, see ordering information) by adding **3 x 250 \, \mu\text{L}** of **1x Elution Buffer**. Allow the wells to drain by gravity.

Note: To increase the concentration of the polyhistidine-tagged protein in the final eluate add \(80 \, \mu\text{L} \) of Elution Buffer and discard the flow-through (this flow-through mainly contains LEW Buffer from the washing steps). Afterwards elute the protein by adding 3 x 250 \, \mu\text{L} of Elution Buffer.

Note: Depending on protein characteristics 90% of the eluted protein can be found in the first elution fraction.

Use protein assay and/or SDS-PAGE analysis to determine which fraction(s) contain(s) the majority of the polyhistidine-tagged protein.
6 Purification of polyhistidine-tagged proteins from *E.coli* under denaturing conditions

6.1 Preparation of buffers for purification under denaturing conditions

Protino® Ni-IDA 150/1000/2000 Packed Columns kits contain stock solutions of LEW Buffer and Elution Buffer for purification under native conditions. For purification under denaturing conditions prepare Denaturing Solubilization Buffer and Denaturing Elution Buffer according to the instruction given in this section. Note that additional volumes of LEW Buffer have to be prepared as well.

Protino® Ni-IDA Resin kits do not contain any buffers. Prepare LEW Buffer, Denaturing Solubilization Buffer, and Denaturing Elution Buffer according to the instruction given in this section.

Note: Due to the dissociation of urea, prepare buffers immediately prior to use.

Lysis-Equilibration-Wash Buffer (1x LEW Buffer, 1 liter):

- 50 mM NaH$_2$PO$_4$
 7.8 g NaH$_2$PO$_4$ x 2 H$_2$O (MW = 156.01 g/mol)
- 300 mM NaCl
 17.5 g NaCl (MW = 58.44 g/mol)
- Adjust pH to 8.0 using NaOH

Denaturing Solubilization Buffer (1x Denaturing Solubilization Buffer, 1 liter):

- 50 mM NaH$_2$PO$_4$
 7.8 g NaH$_2$PO$_4$ x 2 H$_2$O (MW = 156.01 g/mol)
- 300 mM NaCl
 17.5 g NaCl (MW = 58.44 g/mol)
- 8 M urea
 480.5 g urea (MW = 60.06 g/mol)
- Adjust pH to 8.0 using NaOH

Denaturing Elution Buffer (1x buffer, 1 liter):

- 50 mM NaH$_2$PO$_4$
 7.8 g NaH$_2$PO$_4$ x 2 H$_2$O (MW = 156.01 g/mol)
- 300 mM NaCl
 17.5 g NaCl (MW = 58.44 g/mol)
- 8 M urea
 480.5 g urea (MW = 60.06 g/mol)
- 250 mM imidazole
 17.0 g imidazole (MW = 68.08 g/mol)
- Adjust pH to 8.0 using NaOH
6.2 Cell extract preparation under denaturing conditions

We recommend this protocol if expression leads to the formation of inclusion bodies. Cells are disrupted under native conditions using lysozyme together with sonication. After centrifugation the polyhistidine-tagged protein is extracted and solubilized from the pellet by using a denaturant (8 M urea). The extract obtained is clarified by centrifugation and applied to Protino® Ni-IDA Packed Columns or Protino® Ni-IDA Resin under denaturing conditions. Purification of polyhistidine-tagged proteins under denaturing conditions is similar to purification under native conditions except that the cell extract and buffers loaded on the column contain 8 M urea. For buffer compositions see section 6.1.

1 Isolation of inclusion bodies

Refer to Table 3, section 3.4 for detailed information on culture and buffer volume requirements.

Thaw the cell pellet from an E.coli expression culture on ice (if frozen). Resuspend 1 g of pelleted, wet cells in 5 mL LEW Buffer (without denaturant) on ice (also see section 3.4). Pipette up and down, or use stirring until complete resuspension without visible cell aggregates.

Add lysozyme to a final concentration of 1 mg/mL. Stir the solution on ice for 30 min.

Sonicate the suspension on ice according to the instructions provided by the manufacturer (e.g., use 10 x 15 s bursts with a 15 s cooling period between each burst).

Carefully check samples´ appearance after sonication. If the lysate is still viscous from incomplete fragmentation of DNA, add 5 µg/mL DNase and stir on ice for 15 min.

Centrifuge the crude lysate at 10,000 x g for 30 min at 4 °C to collect the inclusion bodies. Discard supernatant. Keep pellet on ice.

2 Solubilization of inclusion bodies

Resuspend the pellet in 10 mL LEW Buffer per g wet cells to wash the inclusion bodies.

Centrifuge the suspension at 10,000 x g for 30 min at 4 °C. Discard supernatant.

Resuspend the pellet in 2.0 mL Denaturing Solubilization Buffer per g wet cells to solubilize the inclusion bodies. Homogenization or sonication may be necessary to resuspend the pellet. Dissolve the inclusion bodies by stirring on ice for 60 min.

Centrifuge at 10,000 x g for 30 min at 20 °C to remove any remaining insoluble material. Carefully transfer the supernatant to a clean tube without disturbing the pellet.

If the supernatant is not clear centrifuge a second time or filter through a 0.45 µm membrane (e.g., celluloseacetate) to avoid clogging of the IMAC column with insoluble material.

Save supernatant.

Proceed to section 6.3 or 6.4.
6.3 Protino® Ni-IDA Packed Columns – purification under denaturing conditions

1 **Cell Extract Preparation**

Refer to section 6.2. For detailed information on culture and buffer volumes for cell extract preparation also see Table 3, section 3.4.

2 **Solubilization of inclusion bodies**

Refer to section 6.2. For detailed information on culture and buffer volumes for cell extract preparation also see Table 1, section 3.4.

3 **Column equilibration**

Equilibrate Protino® Ni-IDA Packed Columns with **Denaturing Solubilization Buffer**. Allow the column to drain by gravity.

Protino® Ni-IDA 150/1000 Packed Columns are designed to fit into most 15 mL conical centrifuge tubes (e.g., BD Falcon 352097) for convenient fraction collection.

4 **Binding**

Add the supernatant (solubilized protein, see section 6.2) to the pre-equilibrated column and allow the column to drain by gravity.

5 **Washing**

Wash the column with **Denaturing Solubilization Buffer**. Allow the column to drain by gravity.

6 **Elution**

Elute the polyhistidine-tagged protein in a new collecting tube by adding **Denaturing Elution Buffer**. Allow the column to drain by gravity.

Note: Depending on protein characteristics 90% of the eluted protein can be found in the first elution fraction.

Use protein assay and/or SDS-PAGE analysis to determine which fraction(s) contain(s) the majority of the polyhistidine-tagged protein.
6.4 Protino® Ni-IDA Resin – gravity-flow column chromatography under denaturing conditions

For column IMAC using Protino® Ni-IDA Resin we generally recommend the gravity-flow procedure. This protocol describes gravity-flow column chromatography using Protino® Ni-IDA Resin and Protino® Columns (see section 1.2).

Prepacked columns filled with 40 mg, 250 mg or 500 mg Protino® Ni-IDA Resin readily be used (Protino® Ni-IDA 150, 1000, or 2000 Packed Columns, see section 6.3 and ordering information).

Note: When using other types of chromatography columns please note that the pore size of the filter frit should be around 50 µm to ensure appropriate flow rates.

1 Column preparation

Transfer the appropriate amount of Protino® Ni-IDA Resin to an empty Protino® Column. To achieve tight packing gently tap the column on a hard surface until the bed height remains constant. Place a separate filter frit on top of the column bed by using a lab pen. Gently tap on the frit to ensure that there is no gap between column bed and filter frit.

1 g of Protino® Ni-IDA Resin will result in 2 mL bed volume.

The amount of resin required depends on the amount of polyhistidine-tagged protein to be purified. The binding capacity of Protino® Ni-IDA Resin varies from protein to protein. See section 3.3 for general guidelines.

2 Column equilibration

Equilibrate the column with 4 bed volumes of Denaturing Solubilization Buffer. Allow the column to drain by gravity.

3 Binding

Add the supernatant (solubilized proteine, see section 6.2) to the pre-equilibrated column and allow the column to drain by gravity.

4 Washing

Wash the column with 8 bed volumes of Denaturing Solubilization Buffer. Allow the column to drain by gravity.

5 Elution

Elute the polyhistidine-tagged protein in three fractions. Add 3 x 3 bed volumes of Elution Buffer and collect separately. Allow the column to drain by gravity.

Note: Depending on protein characteristics 90% of the eluted protein can be found in the first elution fraction.

Use protein assay and/or SDS-PAGE analysis to determine which fraction(s) contain(s) the majority of the polyhistidine-tagged protein.
7 Cleaning, recharging, and storage

Cleaning

After use, wash resin with 10 bed volumes of LEW Buffer and 10 bed volumes of deionized water. Wash with 2 bed volumes of 20 % ethanol and store resin in 20 % ethanol at 4 °C.

Recharging

Depending on the nature of the sample Protino® Ni-IDA Resin can be reused 3–5 times. Reuse should only be performed with identical polyhistidine-tagged proteins to avoid possible cross-contamination.

After the final elution step wash Protino® Ni-IDA Resin with the following solutions:

- 5 bed volumes of 100 mM EDTA, pH 8
- 5 bed volumes of deionized water
- 5 bed volumes of 100 mM NiSO₄
- 10 bed volumes of deionized water

After equilibrating with LEW buffer the resin is ready for reuse.

Complete regeneration

If a complete regeneration is mandatory, wash resin with the following solutions:

- 2 bed volumes of 6 M GuHCl, 0.2 M acetic acid
- 5 bed volumes of deionized water
- 3 bed volumes of 2 % SDS
- 5 bed volumes of deionized water
- 5 bed volumes of 100 % EtOH
- 5 bed volumes of deionized water
- 5 bed volumes of 100 mM EDTA pH 8
- 5 bed volumes of deionized water
- 5 bed volumes of 100 mM NiSO₄
- 10 bed volumes of deionized water
8 Appendix

8.1 Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause and suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample does not enter column bed</td>
<td>Sample/lysate contains insoluble material</td>
</tr>
<tr>
<td></td>
<td>• If the sample is not clear use centrifugation or filtration (0.45 µm membrane) to avoid clogging of the IMAC column.</td>
</tr>
<tr>
<td></td>
<td>Sample/lysate contains genomic DNA</td>
</tr>
<tr>
<td></td>
<td>• Lysate may remain viscous from incomplete shearing of genomic DNA after sonication. Add 5 µg/mL DNase and incubate on ice for 10 min.</td>
</tr>
<tr>
<td>Protein does not bind to the resin</td>
<td>Problems with vector construction</td>
</tr>
<tr>
<td></td>
<td>• Ensure that protein and tag are in frame.</td>
</tr>
<tr>
<td></td>
<td>Incorrect binding conditions</td>
</tr>
<tr>
<td></td>
<td>• Check composition of buffers and verify pH 7–8. Ensure that there is no chelating or strong reducing reagent or imidazole present.</td>
</tr>
<tr>
<td>Protein elutes with wash buffer</td>
<td>Incorrect buffer composition</td>
</tr>
<tr>
<td></td>
<td>• Check composition of buffers and verify pH 7–8. Ensure that there are no chelating or strong reducing agents or imidazole present.</td>
</tr>
<tr>
<td>Protein does not elute from column</td>
<td>Elution conditions are too mild.</td>
</tr>
<tr>
<td></td>
<td>• Increase concentration of imidazole.</td>
</tr>
</tbody>
</table>
Purification of His-tag proteins

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause and suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unwanted proteins elute with polyhistidine-tagged protein</td>
<td>Insufficient wash
• Use larger volumes for washing step. Binding and wash conditions are too mild
• Add small amounts of imidazole (1–10 mM). Verify that the imidazole concentration is low enough to bind the polyhistidine-tagged protein. Contaminating proteins and target protein are linked together via disulfide bonds
• Add up to 30 mM β-mercaptoethanol to reduce disulfide bonds. Contaminating proteins are proteolytic products of target protein
• Perform cell lysis at 4 °C.
• Include protease inhibitors. Expression is too low
Contaminating host proteins have a better chance to bind to the resin when only small amounts of target protein are present in the lysate. Very low amounts of polyhistidine-tagged protein are not able to replace the majority of contaminating proteins effectively.
• Increase expression level.
• Increase amount of starting cell material.
• Do not exceed recommended lysis volumes.</td>
</tr>
</tbody>
</table>

8.2 Ordering information

<table>
<thead>
<tr>
<th>Product</th>
<th>REF</th>
<th>Pack of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protino® Ni-IDA Resin</td>
<td>745210.5</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>745210.30</td>
<td>30 g</td>
</tr>
<tr>
<td></td>
<td>745210.120</td>
<td>120 g</td>
</tr>
<tr>
<td></td>
<td>745210.600</td>
<td>600 g</td>
</tr>
<tr>
<td>Protino® Ni-IDA 150 Packed Columns (contains 40 mg of resin each)</td>
<td>745150.10</td>
<td>10 preps</td>
</tr>
<tr>
<td></td>
<td>745150.50</td>
<td>50 preps</td>
</tr>
<tr>
<td>Protino® Ni-IDA 1000 Packed Columns (contains 250 mg of resin each)</td>
<td>745160.10</td>
<td>10 preps</td>
</tr>
<tr>
<td></td>
<td>745160.50</td>
<td>50 preps</td>
</tr>
<tr>
<td>Protino® Ni-IDA 2000 Packed Columns (contains 500 mg of resin each)</td>
<td>745170.5</td>
<td>5 preps</td>
</tr>
<tr>
<td></td>
<td>745170.25</td>
<td>25 preps</td>
</tr>
<tr>
<td>Product</td>
<td>REF</td>
<td>Pack of</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Protino® Ni-TED Resin</td>
<td>745200.5</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>745200.30</td>
<td>30 g</td>
</tr>
<tr>
<td></td>
<td>745200.120</td>
<td>120 g</td>
</tr>
<tr>
<td></td>
<td>745200.600</td>
<td>600 g</td>
</tr>
<tr>
<td>Protino® Ni-TED 150 Packed Columns (contains 40 mg of resin each)</td>
<td>745100.10</td>
<td>10 preps</td>
</tr>
<tr>
<td></td>
<td>745100.50</td>
<td>50 preps</td>
</tr>
<tr>
<td>Protino® Ni-TED 1000 Packed Columns (contains 250 mg of resin each)</td>
<td>745110.10</td>
<td>10 preps</td>
</tr>
<tr>
<td></td>
<td>745110.50</td>
<td>50 preps</td>
</tr>
<tr>
<td>Protino® Ni-TED 2000 Packed Columns (contains 500 mg of resin each)</td>
<td>745120.5</td>
<td>5 preps</td>
</tr>
<tr>
<td></td>
<td>745120.25</td>
<td>25 preps</td>
</tr>
<tr>
<td>Protino® Columns 14 mL (empty gravity flow columns for use with e.g. Protino® Ni-IDA Resin)</td>
<td>745250.10</td>
<td>10 columns</td>
</tr>
<tr>
<td>Protino® Columns 35 mL (empty gravity flow columns for use with e.g. Protino® Ni-IDA Resin)</td>
<td>745255.10</td>
<td>10 columns</td>
</tr>
<tr>
<td>NucleoBond® Rack Small (for Protino® Ni-TED / IDA 150 Packed Columns)</td>
<td>740562</td>
<td>1</td>
</tr>
<tr>
<td>NucleoBond® Rack Large (for Protino® Ni-TED / IDA 1000 / 2000 Packed Columns)</td>
<td>740563</td>
<td>1</td>
</tr>
<tr>
<td>Rack of MN Tube Strips (1 rack, 12 strips with 8 tubes each, and 12 Cap Strips)</td>
<td>740637</td>
<td>1 set</td>
</tr>
</tbody>
</table>
8.3 Product use restriction / warranty

Protino® Ni-IDA products are intended, developed, designed, and sold FOR RESEARCH PURPOSES ONLY, except, however, any other function of the product being expressly described in original MACHELEY-NAGEL product leaflets.

MACHELEY-NAGEL products are intended for GENERAL LABORATORY USE ONLY! MACHELEY-NAGEL products are suited for QUALIFIED PERSONNEL ONLY! MACHELEY-NAGEL products shall in any event only be used wearing adequate PROTECTIVE CLOTHING. For detailed information please refer to the respective Material Safety Data Sheet of the product! MACHELEY-NAGEL products shall exclusively be used in an ADEQUATE TEST ENVIRONMENT. MACHELEY-NAGEL does not assume any responsibility for damages due to improper application of our products in other fields of application. Application on the human body is STRICTLY FORBIDDEN. The respective user is liable for any and all damages resulting from such application.

DNA/RNA/PROTEIN purification products of MACHELEY-NAGEL are suitable for IN-VITRO-USES ONLY!

ONLY MACHELEY-NAGEL products specially labeled as IVD are also suitable for IN-VITRO-diagnostic use. Please pay attention to the package of the product. IN-VITRO-diagnostic products are expressly marked as IVD on the packaging.

IF THERE IS NO IVD SIGN, THE PRODUCT SHALL NOT BE SUITABLE FOR IN-VITRO-DIAGNOSTIC USE!

ALL OTHER PRODUCTS NOT LABELED AS IVD ARE NOT SUITED FOR ANY CLINICAL USE (INCLUDING, BUT NOT LIMITED TO DIAGNOSTIC, THERAPEUTIC AND/OR PROGNOSTIC USE).

No claim or representations is intended for its use to identify any specific organism or for clinical use (included, but not limited to diagnostic, prognostic, therapeutic, or blood banking). It is rather in the responsibility of the user or - in any case of resale of the products - in the responsibility of the reseller to inspect and assure the use of the DNA/RNA/protein purification products of MACHELEY-NAGEL for a well-defined and specific application.

MACHELEY-NAGEL shall only be responsible for the product specifications and the performance range of MN products according to the specifications of in-house quality control, product documentation and marketing material.

This MACHELEY-NAGEL product is shipped with documentation stating specifications and other technical information. MACHELEY-NAGEL warrants to meet the stated specifications. MACHELEY-NAGEL’s sole obligation and the customer’s sole remedy is limited to replacement of products free of charge in the event products fail to perform as warranted. Supplementary reference is made to the general business terms and conditions of MACHELEY-NAGEL, which are printed on the price list. Please contact us if you wish to get an extra copy.

There is no warranty for and MACHELEY-NAGEL is not liable for damages or defects arising in shipping and handling (transport insurance for customers excluded), or out of accident or improper or abnormal use of this product; defects in products or components not manufactured by MACHELEY-NAGEL, or damages resulting from such non-MACHELEY-NAGEL components or products.

MACHELEY-NAGEL makes no other warranty of any kind whatsoever, and SPECIFICALLY DISCLAIMS AND EXCLUDES ALL OTHER WARRANTIES OF ANY KIND OR NATURE.
WHATSOEVER, DIRECTLY OR INDIRECTLY, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, AS TO THE SUITABILITY, REPRODUCTIVITY, DURABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, CONDITION, OR ANY OTHER MATTER WITH RESPECT TO MACHELY-NAGEL PRODUCTS.

In no event shall MACHELY-NAGEL be liable for claims for any other damages, whether direct, indirect, incidental, compensatory, foreseeable, consequential, or special (including but not limited to loss of use, revenue or profit), whether based upon warranty, contract, tort (including negligence) or strict liability arising in connection with the sale or the failure of MACHELY-NAGEL products to perform in accordance with the stated specifications. This warranty is exclusive and MACHELY-NAGEL makes no other warranty expressed or implied.

The warranty provided herein and the data, specifications and descriptions of this MACHELY-NAGEL product appearing in MACHELY-NAGEL published catalogues and product literature are MACHELY-NAGEL’s sole representations concerning the product and warranty. No other statements or representations, written or oral, by MACHELY-NAGEL’s employees, agent or representatives, except written statements signed by a duly authorized officer of MACHELY-NAGEL are authorized; they should not be relied upon by the customer and are not a part of the contract of sale or of this warranty.

Product claims are subject to change. Therefore please contact our Technical Service Team for the most up-to-date information on MACHELY-NAGEL products. You may also contact your local distributor for general scientific information. Applications mentioned in MACHELY-NAGEL literature are provided for informational purposes only. MACHELY-NAGEL does not warrant that all applications have been tested in MACHELY-NAGEL laboratories using MACHELY-NAGEL products. MACHELY-NAGEL does not warrant the correctness of any of those applications.

Last updated: 07/2010, Rev. 03

Please contact:
MACHELY-NAGEL GmbH & Co. KG
Tel.: +49 24 21 969-270
e-mail: tech-bio@mn-net.com

Trademarks:
Benzonase® is a registered trademark of Merck KGaA, Darmstadt, Germany.
FPLC™ is a trademark of Amersham Biosciences Corp.
Protino® is a registered trademark of MACHELY-NAGEL GmbH & Co KG

All used names and denotations can be brands, trademarks, or registered labels of their respective owner – also if they are not special denotation. To mention products and brands is only a kind of information (i.e., it does not offend against trademarks and brands and can not be seen as a kind of recommendation or assessment). Regarding these products or services we can not grant any guarantees regarding selection, efficiency, or operation.
Plasmid DNA
Clean up
RNA
DNA
Viral RNA and DNA
Protein
High throughput
Accessories
Auxiliary tools